BLUE VALLEY DISTRICT CURRICULUM OVERVIEW 8th Pre-Engineering

UNIT 1: Mindset of an Engineer

ESSENTIAL QUESTIONS	BIG IDEAS
How do you develop the mindset of an Engineer?	 Students have opportunities to develop engineering skills, which include; being solution oriented problem solvers, perseverance, team building, collaboration, conflict resolution and visual communications. Students understand the culture and expectations of an engineering environment through tiered levels of support. Students understand how engineers think and operate safely. Students understand how to operate in a blended learning environment.
GUIDING QUESTIONS	

Content: Mindset

- What skills are important for an engineer?
- How do engineers communicate their designs visually?
- How do engineers think?
- How do engineers collaborate in a solution-oriented environment?
- How do engineers communicate?
- How do engineers give and receive feedback?
- Why is safety an integral part of the engineering environment?
- What role does reflection play in problem solving?
- What are some good strategies to use when you have a problem?

Content

• What is engineering?

- What kinds of drawings do engineers use to communicate their ideas?
- What do engineers do (including non-traditional)?
- What around you in life involves engineers?
- What process do engineers use to solve problems?
- What role does safety play in the engineering environment?
- What is tiered level of support and how can it help me?
- How do engineers navigate blended learning and technology?
- What impact does engineering have on your world?

Process

- What are the steps of an engineering design process?
- What purpose does this process serve for engineers?
- What does conflict resolution look like? What does compromise look like?
- What can collaboration teach us about problem solving?

Reflective

- How do engineers learn from failure?
- How can the engineering design process benefit us in solving problems in our daily lives?
- Why do we use an engineering design process?
- Why is it important to consider multiple points of view?

UNIT 2: Engineering Design Process

ESSENTIAL QUESTIONS	BIG IDEAS
How do engineers solve problems?	 Students understand why professionals use the engineering design process to solve problems. Students seek feedback through a variety of protocols. Students understand that engineering design process is both creative and critical thinking. Students use the engineering design process to solve problems.

GUIDING QUESTIONS

Content: Mindset

- How do engineers think?
- What skills are important for a engineer?
- How do engineers communicate their designs visually?

Content: Computer Aided Drafting (CAD) Content

- What is a multiview drawing?
- Why do engineers develop a multi-view drawing? (manual &/or CAD).
- How do you show a design in 3D in a 2D format? (orthographic projection)
- How do engineers demonstrate visualization skills in orthographic (multi-view) projection using (manual &/or CAD)?
- How do engineers use drafting to communicate ideas and tell a story? (Human to Human, Human to Machine and Machine to Human)
- What role does the use of symbols, measurements, and drawings play in promoting a clear communication?(By providing a common universal language to express ideas- multi-view/orthographic projection)

Content and Process: Engineering Design Process

- 1. Identify the problem
 - a. Creative Thinking
 - i. What do I understand about the problem/challenge?
 - ii. What are all the possible sub-problems?
 - iii. What do I already know about the content?
 - iv. What skills do I have that will help me?
 - b. Critical Thinking
 - i. For whom might this be a problem and what is their perspective?
 - ii. Which sub-problem would be most important to solve?
 - iii. What do I need to know or learn?
 - iv. Where can I find credible information to help me gain knowledge and/or skills?
- 2. Brainstorm solution ideas
 - a. Creative Thinking
 - i. What are all the possible ways I might solve this problem?
 - ii. What are all the ways we might(brainstorm solution ideas)?
 - iii. What might the solution idea look like (initial sketch/description)?
 - iv. Where can I get more ideas to help me?
 - b. Critical Thinking
 - i. Which idea will be most likely to solve the problem?
 - ii. How can I provide feedback to others that is kind, specific, and helpful?
 - iii. How can the feedback I received help me improve my design?
- 3. Design solution idea
 - a. Creative Thinking
 - i. How can I design and build a prototype of my solution idea?
 - ii. How do I visually communicate my solution ideas?
 - iii. How do we design for an unknown?
 - b. Critical Thinking
 - i. How will I test my solution to see if it meets the criteria and constraints?
 - ii. How well did my prototype meet the criteria and constraints?
- 4. Re-design/ Iterate
 - a. Creative Thinking
 - i. How might I improve my design?
 - ii. How can the feedback I received help me improve my design?
 - b. Critical Thinking
 - i. How well did my prototype perform when it was tested?
 - ii. What did I change that made a positive or negative difference in the results?
 - iii. What feedback will help me improve my design?
 - iv. How can I provide feedback to others that is kind, specific, and helpful?
 - v. What else do I need to learn to make additional improvements?
- 5. Share solution
 - a. Creative Thinking

- i. How might I share/communicate my solution?
- b. Critical Thinking
 - i. What will my audience need to see or hear to understand my solution?
 - ii. How well did my solution perform?
 - iii. What have I learned?
 - iv. What feedback did I receive?

Reflective

- What parts of the engineering design process did I struggle with and which ones did I excel at?
- What can we learn from our failures and successes?
- How did your thinking change throughout the engineering design process?
- What are some examples of how you thought and worked like an engineer?
- What can we learn from analyzing the data? How can this help me on the next project?
- How well did my team work together? What helped us to be successful? What interfered with our productivity?

UNIT 3: Engineering Technology

How do engineers shape the world?.	 Students apply foundational scientific principles in the engineering classroom. Students use engineering technologies to create efficient solutions. Students engage in the engineering design process to experience concepts in the field of construction, manufacturing, power, energy and transportation. Students analyze data to modify prototypes and determine overall efficiency.

Computer Aided Drafting (CAD) Content

- What is a multiview drawing?
- Why do engineers develop a multi-view drawing? (manual &/or CAD).
- How do you show a design in 3D in a 2D format? (orthographic projection)
- How do engineers demonstrate visualization skills in orthographic (multi-view) projection using (manual &/or CAD)?
- How do engineers use drafting to communicate ideas and tell a story? (Human to Human, Human to Machine and Machine to Human)
- What role does the use of symbols, measurements, and drawings play in promoting a clear communication?(By providing a common universal language to express ideas- multi-view/orthographic projection)
- How do engineers develop a isometric drawing? (manual &/or CAD).

Engineering Technology in Power, Energy and Transportation: Content

- What is power?
- What is energy?
- What is work?
- What is potential energy?
- What is kinetic energy?
- What is mechanical advantage?
- What are simple machines?
- What are complex machines?
- What is flight?
- What are Newton's Laws?
- What is hydrodynamic?
- What is aerodynamic?

Engineering Technology in Power, Energy and Transportation: Process

- How do we utilize power and energy concepts to modify iterations of our designs during the engineering design process?
- How do we determine our mechanical advantage and how do we modify our prototype to improve our mechanical advantage to improve performance?
- How does yaw, lift, drag and roll affect flight.
- How do power, energy and work impact performance?
- How do we utilize the concepts in Newton's Laws to maximize the efficiency of our prototype?
- How do we apply our knowledge of simple and complex machines and their functionality to build prototypes?

Engineering Technology in Power, Energy and Transportation: Reflective

- What were the strengths and weaknesses of my design?
- Why was my design successful? (use evidence from the class data to support your response)
- Based on the class data, how could I improve upon my design?
- What advice would you offer someone else attempting this project?

Engineering Technology in Construction: Content

- What are forces and how do they act upon structures? (compression, tension, torsion, sheer, load)
- What materials do we use to build structures?
- What geometric shapes are used in construction and what shapes provide the most stability?
- What types of joints and construction components are used in your design? (ex: columns, girders)
- What is a truss and what are the various truss types?
- How do you calculate structural efficiency?

Engineering Technology in Construction: Process

- What geometric shapes should be used for strong, safe and functional design?
- How can I use precision construction to improve my designs efficiency?
- How do you determine the best material to use?
- What construction processes are utilized to create structurally stable prototypes?
- How do materials properties differ and how do these varying properties affect their uses and stability?

Engineering Technology in Construction: Reflective

- What were the strengths and weaknesses of my design?
- Why was my design successful? (use evidence from the class data to support your response)
- Based on the class data, how could I improve upon my design?
- What advice would you offer someone else attempting this project?

Engineering Technology in Manufacturing: Content

- What is manufacturing?
- How has manufacturing changed over the last century?
- What technologies are used in manufacturing?
- How does a laser engraver work?
- What are the features and benefits of manufacturing?

• Where does computer aided design play into manufacturing?

Engineering Technology in Manufacturing: Process

- What does the manufacturing process look like?
- How can technology help me be more effective, efficient and professional with the products I create?
- How can technology help me create opportunities to explore my passions and interests further?
- How do you determine which computer aided design program best fits your project?

Engineering Technology in Manufacturing: Reflective

- What were the strengths and weaknesses of my design?
- What advice would you offer someone else attempting this project?
- How does using technology in manufacturing benefit the me/consumer?
- How do we use technology in manufacturing?
- What impact does manufacturing have on my world?
- How can manufacturing skills be applied to further my interests and passions?
- What skills are going to be necessary for future manufacturing?

UNIT 4: Engineering Solutions

ESSENTIAL QUESTIONS	BIG IDEAS
How do engineers communicate solutions?	 Students explore passions and interests around power, energy, tranon, manufacturing and visual communications. Students use the engineering design process to document their learnings through a manual or virtual design journal. Students collect, analyze and evaluate data to enhance their prototype for optimal performance. Students explain their learning through a reflective process of critique, revision and final outcome.

Capstone Engineering Strands

- Engineering Technology in Power, Energy and Transportation
- Engineering Technology in Construction
- Engineering Technology in Manufacturing
- Engineering Technology in Visual Communications

Student Expectations

- Students will utilize content specific skills to execute Capstone Project.
- Students utilize skills they have developed in areas which include; being solution oriented problem solvers, perseverance, collaboration, conflict resolution and visual communications.
- Students utilize skills about how engineers think and operate safely.
- Students reflect on how their thinking changed throughout the engineering design process.
- Students seek feedback through a variety of protocols.

Outcomes

- Students will use the engineering design process to document their learning.
- Students collect, analyze and evaluate data to enhance their prototype for optimal performance.
- Students explain their learning through a reflective process of critique, revision and final outcome.
- Students will display learning using appropriate platform of their choice.(Blended Learning)
- What are some examples of how you thought and worked like an engineer?
- Are there applications to real world problems or industry?